Generic Elective (Maths.) (Mid Term: GE-1)

Full	Full Marks: 15.	
	Solve any three questions.	
1.	Define Limit and Continuity of a real valued function.	5.
2.	If $y = (\sin^{-1} x)^2$, prove that	5.
3.	$(1-x^2)$ $y_{n+2}-(2n+1)xy_{n+1}-n^2y_n=0$ State and prove Euler's theorem on homogeneous function.	5.
4.	Find the reduction formula for $\int \tan^n x \ dx$.	5.
5.	Find the length of the plane curve $y^2 = x^3$ for $0 \le x \le 1$	5.

Generic Elective (Maths.)

GE - 2) (Mid Term:

Full Marks: 15.		Time: $1\frac{1}{2}$ hrs.
-----------------	--	---------------------------

Solve any three questions.

1.	y(1+xy)dx - xdy = 0	5.
2.	$p^2 + 2px - 3x^2 = 0$	5.
3.	$y = px + \frac{a}{p}$	5.
4.	$(D^2 - 5D + 6)y = x^3 e^{2x}$	5.

Generic Elective (Maths.) (Mid Term: GE - 3)

Time: $1\frac{1}{2}$ hrs. Full Marks: 15.

Answer three questions.

1.	Define sequence of real numbers and its convergence with example.	5.
2.	Define bounds of a sequence, Cauchy sequence and prove that convergence sequence has unique limit.	5.
3.	Define a series of real numbers and its convergence .	5.
4.	Prove that the series $\sum \frac{1}{np}$ is convergent for $p>1$	5.
5.	State and prove Comparison test of convergence of an infinite series	5.

Generaic Elective (Maths.) (Mid Term: GE - 4)

Full !	Marks: 15.	l'ime :	1 - hrs	š.,
	Answer any three questions.		-	
1.	Define abelian group with an example with finite elem	nents		5.
2.	Define addition modulo m and multiplication modulo p of integers			5.
3.	Define subgroup, coset and index of a subgroup.			5.
4.	State and prove Lagrange's theorem.			5.
5.	Define Normal subgroup and Quotient group.			5.